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Facial Reconstruction as 
a Regression Problem

ABSTRACT

This chapter presents a computer-assisted method for facial reconstruction. This method provides an 
estimation of the facial outlook associated with unidentified skeletal remains. Current computer-assisted 
methods using a statistical framework rely on a common set of points extracted form the bone and soft-
tissue surfaces. Facial reconstruction then attempts to predict the position of the soft-tissue surface points 
knowing the positions of the bone surface points. This chapter proposes to use linear latent variable 
regression methods for the prediction (such as Principal Component Regression or Latent Root Root 
Regression) and to compare the results obtained to those given by the use of statistical shape models. 
In conjunction, the influence of the number of skull landmarks used was evaluated. Anatomical skull 
landmarks are completed iteratively by points located upon geodesics linking the anatomical landmarks. 
They enable artificial augmentation of the number of skull points. Facial landmarks are obtained using 
a mesh-matching algorithm between a common reference mesh and the individual soft-tissue surface 
meshes. The proposed method is validated in terms of accuracy, based on a leave-one-out cross-validation 
test applied on a homogeneous database. Accuracy measures are obtained by computing the distance 
between the reconstruction and the ground truth. Finally, these results are discussed in regard to current 
computer-assisted facial reconstruction techniques, including deformation based techniques.
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INTRODUCTION

In forensic medicine, craniofacial reconstruction 
refers to any process that aims to recover the 
morphology of the face from skull observation 
(Wilkinson, 2005). Otherwise known as facial 
approximation, it is usually considered when 
confronted with an unrecognisable corpse and 
when no other identification evidence is avail-
able. This reconstruction may hopefully provide 
a route to a positive identification. Forensic facial 
reconstruction is more of a tool for recognition, 
than a method of identification [Wilkinson]: it 
aims to provide a list of names from which the 
individual may be identified by accepted methods 
of identification. Since its conception in the 19th 
century, two schools of thought have developed 
in the field. To answer the question “will only 
one face be produced from each skull”, facial 
“approximators” claim that many facial variations 
from the same skull may be produced, whereas 
practitioners of the other school of thought attempt 
to characterised the individual skull morphology 
to make the individual recognisable. In recent 
years, computer-assisted techniques have been 
developed following the evolution of medical 
imaging and computer science. As presented in 
the surveys in Buzug (2006), Clemens (2005), 
DeGreef (2005), and Wilkinson (2005), comput-
erised approaches are now available with reduced 
performance timeline and operator subjectivity.

The first machine-aided methods were inspired 
by manual methods. Manual reconstruction fol-
lows four basic steps, (according to Helmer, 
2003): Examination of the Skull, Development of 
a Reconstruction Plan, Practical Sculpturing and 
Mask Design. Translated into a computer-assisted 
framework, these steps are according to Buzug 
(2006): Computed Tomography Scan of the skull, 
Matching of a Soft Tissue Template, Warping of 
Template onto Skull Find and Texture Mapping/
Virtual Make-Up. The first step aims to extract 
structural characteristics: for example key skull 
dimension for manual methods or crest-lines 

(Quatrehomme, 1997) for computer assisted ones. 
Another example is the location, automatically or 
by an expert of cephalometric points. Skulls and 
facial surfaces have been collected using a vari-
ety of 2- and 3-D methods such as photography 
(Stratomeier, 2005), video (Evison 1996), laser 
scanning (Claes, 2006), magnetic resonance imag-
ing (Paysan, 2009; Mang, 2006; Michael, 1996), 
holography (Hirsch, 2005; Hering, 2003), mobile 
digital ultrasound scanner (Claes, 2006), computed 
tomography scanning (Jones, 2001; Bérar, 2006; 
Tu, 2007) .The second step consists in compiling 
all the data obtained during the investigation and 
listing soft-tissue depths for specified points of the 
face in accordance with the individual ‘s gender 
and type of constitution. This is the equivalent 
of the “Matching of a Soft Tissue Template” 
step, which aims at identifying an appropriate 
soft-tissue template from a database or inject in 
the model the estimated age, body mass index, 
gender or ancestry.

The third step is either the modeling of the 
muscles using wax, followed by the embedding 
of eye glass, then by the modeling of the nose, 
mouth and eyelids, ... or the deformation of the 
face template in order to fit the set of virtual dowels 
placed on the virtual skull on given landmarks. 
Interactive correction of individual parts of the 
face was usually necessary in the computerized 
reconstruction and, similarly, the wax face is re-
worked to achieve a natural appearance. The last 
step consists in achieving of a natural-looking face. 
In summary, the first machine-aided techniques 
fitted a skin surface mask to a set of interactively 
placed virtual dowels on the digitized model of 
the remains (Evenhouse, 1992; Vanezis, 2000; 
Shahrom, 1996). These techniques did not try to 
learn the relationships between bone surfaces and 
soft-tissue surfaces but to use the relationships 
described in soft-tissue depth tables (Rhine, 1980, 
1984). Moreover, skilled operators were neces-
sary in the choice of facial templates, features 
or sculptural distortions, thus creating a depen-
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dency on the practitioner training and subjectivity 
(Wilkinson, 2005).

Later techniques have moved away from the 
manual techniques and use the relationships be-
tween soft-tissue and bone surfaces. Two kinds 
of methods can be distinguished based on the 
representation of the bone and soft-tissue volumes. 
The first type of techniques aims to keep the con-
tinuous nature of the skull and soft-tissue surfaces. 
Estimates of the face are obtained by applying 
deformations of the space to couples of known 
bone and soft tissue surfaces, called reference 
surfaces. These deformations are learned between 
the surface of the dry skull and the surfaces of the 
reference skulls and then applied on the surfaces 
of the reference faces. They can be parametric 
(e-g B-splines) (Kermi 2007; Vandermeulen 
2006), implicit using variational methods (Mang, 
2006; Mang, 2007) or volumetric (Nelson, 1998; 
Quatrehomme, 1997). Depending on the method, 
the final estimated face can be either the deformed 
face whose reference skull is the nearest of the 
dry skull (Nelson, 1998; Quatrehomme, 19970 
or a combination of all the deformed soft-tissue 
surfaces (Vandermeulen, 2006; Tu, 2007). Here, 
the relationships between the surfaces are not 
learned but conserved through the deformation 
fields. To a single dry skull corresponds as many 
deformed faces as subjects in the database, and 
all the combinations possible between them (the 
more common combination being the mean). The 
generic deformations applied to the templates are 
not face-specific, but only ‘‘smooth’’ in a math-
ematical sense. No problem arises when the differ-
ences between the model and the target skull-based 
surfaces are small. However, if these differences 
are relatively large, the required deformation 
will be more pronounced, resulting in a possibly 
unrealistic or implausible facial reconstruction.

The second type of approaches chooses to rep-
resent individuals using a common set of points, 
like soft-tissue depths were originally measured. 
As the position of the corresponding points for all 
the individuals can be summarised as variables 

in a table, the main idea is then to use statistics 
to decipher the relation between the skull and the 
soft-tissue. The common set of points can either 
be anatomical landmarks (Claes, 2006; Vanezis, 
2000) or semi-landmarks located following a point 
correspondence procedure (Berar, 2006; Kähler, 
2003: Paysan, 2009). Semi-landmarks are defined 
as points that do not have names but that match 
across all the samples of a data set under a reason-
able model of deformation (Bookstein, 1997). Usu-
ally, a small set of anatomical landmarks is used to 
represent the bone surface whereas a larger set of 
points is used to represent the soft-tissue surface. 
The larger the set, the more this representation of 
the surface approaches a real surface. Apart from 
the practical constraint of the number of anatomical 
landmarks that an expert can define and extract, 
there is no justification of a chosen number of 
points used to represent the skull surface. Indeed, 
the information given by the position of skull 
anatomical landmarks is double. First, there is 
geometric information given by the coordinates 
of the points. Then, “anatomic” information is 
given by the measures of tissue thickness made 
on this points. This information is available for a 
limited number of points. However, the geometric 
information given by the position of the point can 
be completed by automatic methods of landmark 
extraction. The second part of the data analysis 
framework consists in learning the relationships 
between the soft-tissue variables and the bone vari-
ables. In current techniques, a linear model of the 
common variability of the positions of the points 
is learned -following the works made in statisti-
cal atlas, medical or audiovisual speech- called a 
statistical shape model (Cootes, 1995). Either the 
variability of the points of the soft-tissue surface 
(Claes, 2006; Basso, 2005; Tu, 2007), or each 
set of points of each surface (Paysan, 2009), or a 
set containing the points of both surfaces (Berar, 
2006; Mang, 2006) can be learned. Statistical 
shape models describe the shape as a mean shape 
and a set of linear variations around it. Each of 
these variations is controlled by the modes of the 
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model, and any individual can be described by a 
set of values of the variations modes, also called 
variability parameters. Statistical shape models are 
an attempt to characterized the individual skull 
morphology to make the individual recognizable 
by the value of the variability parameters. For 
facial reconstruction, the predicted soft-tissue 
surface will be the instance of the shape model 
the nearest to the measured skull landmarks or 
analogous face points, depending on which of 
those points are included in the model.

However, the prediction of the positions of the 
soft-tissue points knowing the positions of the set 
of skull landmarks is a regression problem. The 
skull points will then be considered as entries of 
a regression model and the face points will be 
considered as the outputs of the model. Several 
regression methods have been developed, some 
sharing the ideas behind the statistical shape mod-
els. Principal Component Regression will build a 
statistical shape model of the shape of the skull 
and use the variability parameters of the model, 
also known as latent variables, as predictors for the 
regression problem. Another example of a latent 
variable regression method is Latent Root regres-
sion (Gunst, 1976; Vigneau, 2002). Designed to 
take into account the presence of co-linearity 
in the variables, in our case the positions of the 
skull landmarks and of the face semi-landmarks, 
it shares the use of Principal Component Analysis 
(Joliff, 1986) like the statistical shape model and 
indeed builds a joint statistical shape model of all 
the points, bone and soft-tissue alike.

For all facial reconstruction methods, the 
assessment of the accuracy, reliability and re-
producibility of the computer-based systems is 
of paramount importance. Practitioners have 
relied for a long time on examples of success-
ful forensic cases or subjective assessment of 
resemblance. Databases of surfaces enable us 
to obtain quantitative measures of the proximity 
between the shape of the predicted and validation 
samples. However, as each database is different, so 
are each digitalization and point correspondence 

procedures. Comparison of methods is therefore 
difficult and the quantitative measures of the 
proximity of surfaces do not translate well into 
a success rate for identification. Simplified face-
pool tests have been used in order to estimate the 
identification success rate, established generating 
2D images from the 3D models and showing them 
to human observers (Claes, 2006). In the same 
vein, correspondences between facial landmarks 
on the predicted surface and photographies can 
be researched (Tu 2007) as a short cut for a pos-
sible recognition.

In this chapter, we propose facial reconstruction 
techniques using linear regressions methods and 
compare the results obtained to those given by a 
statistical shape model. The deformation algorithm 
-used to build the database of soft-tissue meshes- 
provides one last facial reconstruction method-
ology, where the deformation field computed 
between the surface of the dry skull and a bone 
surface of the learning database will be applied to 
the corresponding face surface of the base to obtain 
a facial reconstruction. The same error criteria will 
be used to quantitatively compare all the obtained 
reconstructed faces. In conjunction, we inter-
rogate the number of skull landmarks necessary. 
Basing our first experimentation on anatomical 
skull landmarks extracted by an expert, we will 
iteratively add supplementary mathematical skull 
landmarks following the point correspondence 
technique described in Wang (2000), which relies 
on the geodesic paths between the landmarks to 
define new landmarks. Regression methods will 
be used to predict the new points given by each 
iteration and those results compared to those of 
the facial reconstruction methods.

The chapter is organized as follows. The mate-
rial and method are presented in a first section, 
which presents the material on which this study 
has been done. The following sections focus on 
resolving the point correspondence problem, 
describing the two methods used to obtain the 
two subject-shared descriptions of the bone and 
soft-tissue surfaces. Next, statistical methods are 
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discussed: the building and use of a statistical shape 
model, the Principal Component Regression and 
the multivariate Latent Root Regression method. 
Following this, the results obtained by the dif-
ferent models are shown and the influence of the 
number of skull landmarks and of the statistical 
method chosen is discussed.

MATERIAL AND METHODS

This study was performed using whole head and 
skull surface meshes extracted from whole head 
CT scanners acquired for a project on facial re-
construction of University Paris Descartes. In the 
framework of this study, we focus on a group of 
47 women aged from 20 to 40 years. Soft-tissue 
and bone surface meshes have been obtained 
following mathematical and computational pro-
cesses described in Tilotta (2009). Anatomical 
skull landmarks were also manually located on 
each CT Scan according to classical methods of 
physical anthropology (13 midpoints and two 
sets of 13 lateral points). In order to artificially 
augment the size of the database, the entries of 
the database will consist of left or right halves of 
each surface meshes. The skull and the face do 
not have symmetric shapes, but the relationships 
between these face and skull shapes do not depend 
on the side of the head. The plan minimizing the 
distances to the anatomical midpoints has been 
chosen as an artificial boundary between the right 
and left part of the shapes.

The next step is to establish correspondences 
between the shapes of each subject in order to 
quantify the anatomical differences between 
subjects. It is a common step of the building of 
statistical shape models or of statistical atlases. 
According to the nature of the representation of 
the shape in the statistical model (surface, lines, 
points), this problem is reduced to a problem of 
correspondence between sets of points, lines or 
surfaces. Points correspondence procedures ex-
tract points which correspond to the same places 

on the different individuals. In consequences, each 
skull or face shape mesh shares the same mesh 
structure with the same number of vertices. For 
example, anatomical landmarks located by the 
expert establish a rough mesh for each subject with 
a shared structure between the subjects, whereas 
the variability of the position of the vertices reflects 
the anatomical characteristics of each subject. In 
the opposite, deforming a common mesh on all 
the subjects meshes will too share the structure of 
the deformed mesh. The location of the vertices of 
each deformed mesh will too reflect the anatomi-
cal characteristics of each subject. According to 
the point correspondence procedures used, the 
surfaces have to be cut in two at different steps of 
the procedures. The surfaces will be either cut fol-
lowing the boundary plan asa pre-processing step 
(soft-tissue surfaces) or cut as a post-processing 
step (bone surfaces).The automatically extracted 
points respect this symmetry constraint . The points 
shared between the left and right entries will be 
located on the boundary plan.

Building Normalised Shapes: 
Point Correspondence Procedure 
for the Bone Surfaces

The anatomical landmarks located by the expert 
(Figure 1A) establish a first correspondence be-
tween the skulls. Following the scheme presented 
in Wang (2000), we define a set of triangular con-
nections between these anatomical landmarks. For 
each pairs of connected points, we can extract a 
set of geodesic curbs between these points. Geo-
desics are defined to be the shortest path between 
points on the curved spaces of the shape surfaces 
(see Figure 1B). As the shape surface between 
two landmarks is different from a sphere, these 
geodesics are unique. At this step, a gross template 
of curbs on the surface between the landmarks is 
build. We then can define new landmarks as the 
midpoints of each geodesics and decompose each 
triangle into four new triangles. A more dense 
triangulation is then derived as seen Figure 1C. 
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As the iterative process is repeated, the structure 
is refined to denser surface points and triangula-
tion. The obtained structures form meshes, who 
share the same structure for each individual, and 
implicitly solve the point correspondence problem.

Moreover, the defined structure is symmetric: 
the two entries (left and right) of the database 
share a common substructure and set of midpoints 
(Figure 1D). Due to numerical instabilities, two 
methods of geodesics computation on surface 
meshes have been used: Surazhsky algorithm 
(Surazhsky, 2005) and Fast Marching Algorithm 
algorithm (Sethian, 1999), implemented by 
Peyre in the Geowave library. For two iterations 
of the procedure, it results in three sets of skull 
landmarks for each individual. A first set of points 
composed of the original landmarks: 13 midpoints 
and 13 lateral points. A second set composed of 
54 points is added by the first iteration of the 
procedure (10 midpoints and 44 lateral points) 
and completed with 198 new landmarks by the 
second iteration (20 midpoints and 178 lateral 
points). The total number of points for each struc-
ture up to 5 iterations is shown Table 1. 

Figure 2 shows skull meshes corresponding 
to successive iterations of the procedure. As more 

points are extracted, new levels of details are 
obtained especially in the superior part of the 
skull. A limit of this procedure occurs for very 
small length of one or more side of the triangles. 
In this case, the triangle degenerates into a point 
or a segment and subsequent iteration will extract 
all supplementary points in the same location. 
Moreover, as the surface encompassed by each 
triangles becomes smaller, the triangles become 
planar. All supplementary points are then situated 
on the same plane and the information given by 
the supplementary points is less useful. 

Building Normalised Shapes: Point 
Correspondence Procedure for the 
Soft-tissue Surfaces

For the soft-tissue surfaces, no landmarks are 
located. Moreover measures of tissue thickness 
are not provided: the number of skull landmarks 
corresponding to successive iterations of the 
former point correspondence procedure increases 
too much to allow manual measurements to be 
done. The quality of automatic extraction of tissue 
thickness on landmarks depends on the surface 
representation: the normal vectors on the surface 
meshes are sensitive to the triangulation used on 
the surfaces. Tissue thickness cannot be measured 
correctly and automatically on all possible land-
marks (Tilotta, 2009). 

Instead of facial points analogous to the 
anatomical skull points, we extract a set of semi-
landmarks for each individuals neither really 
dense nor sparse. Working on the “half” surfaces 
previously defined, the point correspondence 

Figure 1. Iterative extraction of skull landmarks

Table 1. Number of points by iteration of the 
procedure 

Iteration 0 1 2 3 4 5

Number 
of points

26 80 278 1034 3986 15650

Mid-
points

13 23 43 83 163 323

Figure 2. Skull shape meshes generated for itera-
tion 0 to 5
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procedure register a reference mesh (see Figure 
3A) on the individual soft-tissue surface mesh 
(see Figure 3B) resulting on a deformed reference 
mesh (see Figure 3C). The registration is made 
computing an elastic deformation between the 
reference mesh and soft-tissue surface meshes 
of the database. The deformed meshes of each 
entry of the database have the same number of 
vertices (1741 for the mesh of an half face). The 
assumption of semi landmarks is then assumed: 
each vertex of the deformed reference meshes 
matches the same point for every individual. The 
3D to 3D meshes matching algorithm used is a 
modified version of Szeliski algorithm (Szeliski, 
1996). A first modification has been made to take 
into account the difference of density between the 
reference mesh and the high-density meshes of 
the soft-tissue surfaces. The second modification 
ensures that each vertex of the boundary of the 
deformed reference meshes is shared by the right 
and left meshes. The mesh used as the reference 
mesh correspond to the region of the face of head 
mesh modelled by F. Pighin (1999), where the 
density of vertices is greater in zones with high 
bending than in zones with low bending. This dis-
similarity between the soft-tissue surface meshes 
and the reference meshes have consequences. 
The distances from the vertices of the deformed 
reference mesh to its associated soft-tissue sur-
face mesh are null. However, the distances from 
the vertices of the soft-tissue mesh surface to 
the deformed reference mesh are not null.. The 
highest distances (superior to 3 mm) correspond 
to parts of the soft-tissue surfaces which do not 
have corresponding regions in the reference sur-
face. Other distances correspond to regions like 
the forehead or the cheeks where the difference 
of the density of vertices is large. Vertices with no 
direct counterparts can be as far as 2 mm from the 
surface defined by the deformed reference mesh. 
A good measure of the error introduced during 
this point correspondence step is the median of 
the distances, which does not take into account 
the large distances generated by the lack of cor-

respondence on the boundaries. Upon all samples 
of the database, the mean median of distances is 
0.22 mm (with standard deviation of 0.04 mm). 
Individual correspondence error range from 0.17 
mm to 0.34 mm, whereas the individual mean of 
the distances range from 0.54 mm to 2.66 mm.

STATISTICAL METHODS

The variables x
i

 respectively, y
i
 are obtained 

from the positions of the N skull points, respec-
tively L soft-tissue points of subject i:

� �x = S S S S S S
i x y z x

N
y
N
z
N1 1 1



 	 (1)

� �y = F F F F F F
i x y z x

L
y
L
z
L1 1 1



 	 (2)

Two geometrically averaged templates x  and  
y  are computed and the data are centered:

x = x x
i i i

 - 	 (3)

y = x x
i i i

 - 	 (4)

The data tables X, respectively Y, of size n x 
N, respectively n x L, encompass the variables 
corresponding to the n centered samples x

i
 and 

y
i
 in the learning database. In the following 

Figure 3. Establishing correspondences between 
the face: (a) reference mesh, (b) subject face sur-
face mesh, (c) subject deformed reference mesh



75

Facial Reconstruction as a Regression Problem

paragraphs, the transposition of the matrix X will 
be noted XT .

Principal Components Analysis

Principal Components Analysis (Joliff, 1986) 
performed on the data table X extracts a correla-
tion-ranked set of statistically independent modes 
of principal variations from the set of subjects 
described in the data table X. These principal 
modes are vectors of 3D coordinates (of size 3N) 
defined as linear combinations of point positions. 
They capture the variations observed over all 
subjects in the database. The modes are sometimes 
also called variability parameters. These vectors 
are the eigenvectors of the covariance matrix 
X XT associated to the eigenvalues l

i
 sorted such 

as l > > l
n1
0… ≥ . The eigenvectors are or-

thogonal.

l a = X Xa
i i

T
i
.	  (5)

 Every entry x
i

 in the database can now be 
represented as a weighted linear combination of 
these eigenvectors:

x = c a
i ij jå 	 (6)

where  c
ij

is the weight attached to sample i and 
eigenvector j, also called the principal component 
of sample i on axis of variability j. As the modes 
are correlation-ranked, the first modes are respon-
sible for the greatest part of the observed variance 
of the data. In most cases, only a small number 
of modes is necessary to represent most of the 
observed data. A classical criterion is to choose 
the number of modes t in order to represent 95% 
of the observed variance. A good approximation 
of each sample is then given using the first t 
components:

x = c a
i ij jå 	 (7)

For a new entry x
0

, each weight can be ex-
tracted as the projection of the sample on each 
axis of variability:

c = x aT
j0j 0

	 (8)

A new sample can be build from these com-
ponents and the variability axis.

x̂ = c a
j0 0jå 	

A measure of the generalisation power of the 
model is the reconstruction error, which we will 
call re-synthesis error to avoid confusion with 
(facial) reconstruction: 

E = x x x x
s

T

0, 0 0 0 0
−( ) −( )ˆ ˆ 	 (9)

which consists in the distance between the re-
synthesised sample and the original.

Principal Components Regressions

Principal Components Regression (PCR) is a lin-
ear regression method. The multi-response linear 
regression model for centred data is defined as:

Y = XB+ E 	 (10)

where B is 3N x 3L matrix of regression coeffi-
cients and E is a noise matrix of size n x 3L. The 
elements of the matrix E are assumed to be nor-
mally distributed with mean E[E] =~0 and variance 
var[E] = S. Given a new sample x

0
, an estimate 

of y
0

 is:

y = B xT
0 0

.	  (11)
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The mean square estimation of the coefficients 
of B is given by 

B̂ = X X X YT T( )−1 .	  (12)

However, in case where the predictors (x) 
present a lot of co-linearity, this estimation is 
not optimal and a common way is to substitute 
the predictors by the first t principal components 
corresponding to the samples of the database, 
regrouped in matrix C. As the axis of variability 
are orthogonal, there are no co-linearity in the 
new predictors. A mean square estimation of the 
regression coefficients between the components 
C and Y is build:

Ĝ = C C C Y
PCR

T T( )−1 	 (13)

which can be used to estimate the regression 
coefficients B, (the matrix A regroup the t first 
axis of variability):

B̂ = A C C C Y
PCR

T T( )−1 	 (14)

This kind of methods originates from chemio-
metrics were a small number of predictors must 
predict a great number of outputs. It is then particu-
larly adapted to the ratio between a small number 
of skull landmarks and the great number of face 
points. However, the statistical model presented 
here will take into account only the skull data 
(X), and so will the regression model. How can 
we take into account the observed variability of 
the known face shapes (Y)?

A Common Statistical Shape Model

Consider the matrix Z formed by merging data 
tables X and Y and perform Principal Component 
Analysis on Z. The result of this PCA is still a 
correlation-ranked set of statistically independent 

modes of principal variations d
j

, vectors of size 
3(N+L). Each eigenvector d

i
 with positive eigen-

value obtained by PCA can be decomposed as the 
juxtaposition of two vectors d = v w

i i i



 , with v

i

of size 3N and w
i
 of size 3L. Each part x

i
 and 

y
i
 of entry z

i
 can be expressed sharing the same 

weights b
ij

 and the vectors v
i

 and w
i
:

x = b v
i ij jå 	 (15)

y = b w
i ij jå 	 (16)

For facial reconstruction, we search the best 
model fit: the instance z = x y

0 0 0
ˆ

  of the model 

the nearer from the measured skull landmarks x
0

. As z
0

can be represented using the parametric 
representation of the statistical model as a set of 
weights b

0j
, the problem is resolved finding suc-

cessively each weightb
0j

for which the distance 
between the measured skull landmarks and the 
points of the model corresponding to skull land-
marks is the smallest:

b = argmin b v x b v x
Oj b Oj j

T

Oj j
0j

0 0
−( ) −( ) .	

 (17)

The solution is given 

b = x v v vT
j j

T
j0j 0( ) ( )/ 	 (18)

and the facial reconstruction is obtained by:

ŷ = y + b w
j0 0jå .	  (19)

Latent Root Regression

Latent Root Regression (LRR) is a linear regres-
sion method. LRR is similar to Principal Compo-
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nent Regression (PCR) (and Partial Least Square 
(PLS) regression), with comparable results in the 
literature. Single response Latent Root Regression 
(Hawkins 73, Webster et al. 74) use the same 
vectors v

i
 as the common statistical shape 

model to estimate B. As these vectors are not 
necessary orthogonal, an iterative procedure build 
upon the first latent variable is necessary as in 
multi-responsee PLS (PLS2) (see Vigneau & 
Qannari, 2002 for details) for Multi-Response 
Latent Root Regression. It results in a sequence 
of orthogonal vectors v

i
 which enables us to 

compute regression coefficients, following the 
formula: 

B̂ = v v X Xv v X Y
LRR i i

T T
i i

T T
   ∑ ( )−1 	 (20)

RESULTS

Validation

The validation of the proposed statistical methods 
for craniofacial reconstruction is obtained by a 
leave-one-out cross-validation procedure. Each 
one in his turn, two couples, left and right, of 
skull and soft-tissue samples are removed from 
the database and used as test cases, the remaining 
entries are used to create the statistical model. The 
skull points of each couple are used as separate 
entries for the statistical model. The resulting lo-
cation of the face points are then compared with 
their real location. However, the location of the 
face points is the result of the deformation of a 
common reference mesh. The distance between 
the location of each predicted face point and the 
original soft-tissue surface mesh of the test case 
-which is a better approximation of the ground 
truth- can be computed and is a more acurate 
measure.

How Many Skull Landmarks?

In order to assess the number of necessary skull 
landmarks, we can use the hierarchical nature of 
the extraction procedure presented in section 1.2 
and the statistical methods presented in Section 
2. Each landmark set of inferior level (containing 
less landmarks) can be used to predict the posi-
tion of the landmarks of superior level. If one 
set can predict the positions of all points of all 
subjects of the following level with a very good 
accuracy, then there is no information added by 
the supplementary points. Therefore, it is not 
necessary to use more points for the description 
of the skull shape. However, we can first remark 
that the answer given by this experiment will be 
related but different to the answer to a question 
on the number of necessary skull landmarks to 
facial reconstruction. A common interrogation will 
be: is all the information given by the skull shape 
necessary to predict the shape of the face? Sec-
ondly, the techniques described here can be used 
when the skull is fragmented to predict missing 
fragments of the skull from the remaining parts.

For each set of landmarks, we build a PCA 
model. It gives us a linear model of the shape 
variations, as described by the set of landmarks. 
This model will be used to predict the position 
of the supplementary points in upper level sets, 
using Principal Components Regression. How-
ever, we first test the generalisation capacity 
of these models by projecting the landmarks of 
a test subject into the model, i.e. extracting its 
variability parameters, and then re-synthesising 
the landmarks using these variability parameters. 
If a model has a good generalisation capacity, 
then the location of the re-synthesised points 
will be very close to the location of the points of 
the test subject. These errors correspond to the 
accuracy of the prediction by model based upon 
N0 points of a shape described by N0 points, up 
to the accuracy of the prediction by model N5 of 
a N5-shape. These first results are shown in the 
diagonal of the Table 2. 
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Next, we use principal components regression 
(PCR) to predict the location of the supplementary 
points. If the prediction of these points is accurate, 
then the supplementary points do not add any 
information that can’t be extrapolated linearly 
using the previous set of points. Table 2 presents 
the mean prediction errors of the points introduced 
by each successive level of the procedure. For 
example, the model based on N1 points is used 
for the prediction of shapes described by N2, N3, 
N4 and N5 points.

First, the generalisation capacity of the differ-
ent model as measured by the re-synthesis error 
decreases as the number of points increases (from 
26 to 15650): the ratio between the number of 
points and subjects becomes unbalanced. For a 
N0, the model is built on 96 subjects for 3*26=78 
coordinates, whereas for N5, the model is build 
on 92 subjects for 3*15650 coordinates. More 
subjects are necessary to take into account the 
variability of the data, as the optimal number of 
modes corresponds to the maximum number of 
modes. For N3, N4 and N5, the generalisation 
capacity of the models is not as good, but there 
are no significant differences between the errors 
(1.09 mm vs. 1.13 mm). 

We can then observe that the model based on 
N0 points performs as well as the model based 
on N1 points, whatever the number of points de-
scribing the shape to predict, and uses the same 
number of principal components, even for shapes 
described by N1 points. Moreover, models based 
on N0 and N1 points are not sufficient to model 
the variability of the shapes of the upper levels, 

as shown by the large prediction errors. This 
seems to validate the use of a greater number of 
points than 100.

The models based on N2 and N3 points perform 
as well for re-synthesis than for the prediction 
of the supplementary points. It is particularly 
true in this experiment for the model based on 
N3 points, which perform as well on prediction 
than the models based on N4 and N5 points on 
re-synthesis (1.16 mm vs. 1.13 mm, 1.17 mm vs. 
1.09 mm)). For the prediction of a really great 
number of points (N5), the model based on N2 
points performs the same as the model based on 
less than a hundred of points.

Given our number of subjects in the database, 
one thousand points seems to be a sufficient num-
ber of points to model the shape of the skull. As 
such a number of points can’t be located manu-
ally by an expert without being time consump-
tive, semi-automatic or fully automatic location 
methods for the landmarks are therefore necessary.

Facial Reconstruction: Results

The cross-validation procedure was performed on 
the available database resulting in 47 successive 
test cases. As the database is composed of half 
parts of the bone and skin surface, as much as 92 
modes can be used for the prediction of the loca-
tion of the points of the soft-tissue surface. The 
other limiting factor of the maximum number of 
modes is the number of known points per entries. 
For N0 = 26, the total number of components of the 
known points is 78 and is inferior to the size of the 

Table 2. Accuracy of the prediction of landmarks (mm) (number of variability modes used) 

Sets of points N0 (26) N1 (80) N2 (278) N3 (1034) N4 (3986) N5 (15650)

N0 0,04mm (43) 0,23mm (37) 2,55mm (18) 4,29mm (13) 4,56mm (10) 4.58 mm (12)

N1 _ 0,16mm (43) 3,09mm (19) 4,47mm (14) 4,61mm (10) 4.58 mm (12)

N2 _ _ 0,86mm (92) 1,44mm (79) 1,40mm (79) 4.60 mm (10)

N3 _ _ _ 1,13mm (92) 1,16mm (92) 1.17 mm (92)

N4 _ _ _ _ 1.13mm (92) 1.60 mm (92)
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learning base. For the successive level, it won’t be 
an issue as the total numbers of components is 3 
times the number of points: the maximum number 
of modes is the number of learning samples (92). 

For the three presented methods, the mean 
location error is given in Table 2. Figure 4 shows 
the evolution of the error for the first 25 modes. 
In a first time, we can observe that proper meth-
ods of regression (PCR, LRR) give better results 
for the task of prediction than the use of a joint 
statistical shape model. For this method (PCA 
JSSM), more points correspond to a better predic-
tion of the location of the face semi-landmarks: 
from a mean prediction error of 4,09 mm with N0 
points to a mean prediction error 3.19 mm with 
N5 points . However, even with N5 points, the 
prediction error is still higher than for the regres-
sion methods: 3.19 mm.

The results given by the regression methods 
are equivalent between each methods, and the 
benefits given by the number of points is less 
observable as the values of the mean prediction 
error are very close whatever the number of points: 
between 3.05 mm and 3.17 mm. The results 
given by the PCR method are consistent with the 
test realised to decipher the number of skull land-
marks, with the best prediction given for N2 (then 
N3) points. Remember that for N5 points, most 
of the supplementary points locations can be 

predicted using N3 points. The number of face 
points to be predicted (14616) is in the same range 
than N5, but the relationships between the points 
are not in these case concerning the interior of a 
triangle surface patch. For latent root regression, 
who shares a common scheme with the joint 
statistical shape model, the more points the more 
precise the prediction is, except for the N0 shape 
and N5 shape. N0 is influenced by the good pre-
diction of one of the case, as the standard devia-
tion (0.73mm) for N0 point is higher for any 
other results.

The results presented here plead for the use of 
a regression method, but which one choose. PCR 
performs slightly better than LRR and is less in-
fluenced by the number of skull points used in the 
model. For the moment, it seems that any latent 
variable linear regression can be chosen without 
great difference. The ideal number of points is in 
the range of a thousand.

This mean points location error is very in-
fluenced by the point correspondence procedure 
used for the soft-tissue surfaces. As the objective 
of facial reconstruction is to provide a prediction 
of the shape of the soft-tissue surface, a better 
measure would be the mean distance between the 
predicted points and the soft-tissue surface recon-
structed from the original scan images. Moreover, 

Table 3. Accuracy of the prediction of the semi-
landmarks (mm) (number of variability modes 
used) 

PCR PCA JSSM LRR

N0 3.09 + 0.68 
mm (11)

4,09 +1.28 
mm (4)

3,08 + 0.73 
mm (13)

N1 3.08 + 0.67 
mm (18)

3.93 + 1.12 
mm (4)

3.17 + 0.72 
mm (12)

N2 3.05 + 0.69 
mm (19)

3.87 + 1.05 
mm (4)

3,14 + 0.72 
mm (12)

N3 3.07 + 0.69 
mm (19)

3.69 + 0.94 
mm (4)

3,13 + 0.70 
mm (12)

N4 3.08 + 0.70 
mm (19)

3.36 + 0.87 
mm (6)

3.09 + 0.71 
mm (14)

Figure 4. Example of facial reconstruction for LRR 
method. Left: Original face surface Reconstructed 
face. Right: distance card of the prediction of the 
left and right halves of the soft tissue surface
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the points-to-surface error is the measure used 
in most works in facial reconstruction. Table 4 
presents the results for the points-to-surface er-
ror. The results follow the same pattern than the 
points-to-points error and with a new order of 
magnitude of 1.4 mm, slightly modified by the 
projection operation on the surfaces.

An example of facial reconstruction is pre-
sented figure 4 for LRR method, with the associ-
ated distance cards. At each face landmark, a 
colour is associated following the prediction error 
giving us a spatial map of the reconstruction error. 
This reconstruction corresponds to the following 
global errors: 2.50 + 0.87 mm(P-P), 1.06 + 0.84 
mm (P-S). The range of prediction error for a 
point is 0.007 mm to 4,81mm. The highest recon-
struction errors are located on the side of the face 
in the masseter region. The others regions with 
high errors correspond to the nose and the lower 
eyelid. Note that the predictions and distance cards 
for each halve of the face is slightly different, as 
the face and the skull landmarks are not sym-
metric. However, each reconstructed half face 
shares many common features.

For each method, points number and compo-
nents number, we can compute mean and standard 
deviation for each predicted point of the mask. 
The resulting spatial maps of the quality of the 
reconstruction procedure for the optimal number 
of parameters can be seen in figure 5 for the lo-

cal mean. The mean local errors range from 0.75 
mm to 3 mm. Whatever the method, the facial 
areas with the highest reconstruction error are the 
outer limits of the surface and are for a part an 
artefact of the point correspondence step: there 
is no explicit correspondence to fix the limits of 
the surface in these zones. In the interior part of 
the face, the region with highest reconstruction 
error are the masseter region. These regions have 
few skull landmarks and the bones does not sup-
port the soft-tissue for a large part of the cheeks. 
The regions with the smallest errors (0.75 mm 
to 1 mm) are concentrated toward the middle of 
the face, a part where the number of skull land-
marks is important and where the inter-subjects 
correspondence between the face meshes is more 
constrained. The effect of the increase of the 
number of skull landmarks can be observed in the 
difference in the error cards shown in Figure 5. 
The zones impacted by the increase are the nose 
and the side of the forehead above the temple. 

The mesh-matching algorithm used to provide 
the point correspondence between the soft-tissue 
surfaces can be used in a facial reconstruction 
method by deformation. The deformation field 
computed between a source skull surface and a 
destination skull can be applied to the soft-tissue 
surface of the source. A couple of skull and soft-
tissue surfaces can be chosen as the closest skull 
surface or each surfaces couple of the database 

Table 4. Mean points-to-surface error (mm) 
(number of variability modes used) 

PCR PCA JSSM LRR

N0 1,31+0.28 mm 
(23)

1,89 + 0.50 mm 
(4)

1,33 + 0.26 mm 
(13)

N1 1,33+0.28 mm 
(19)

1,77 + 0.50 mm 
(4)

1,38 + 0.27 mm 
(13)

N2 1,30+0.26 mm 
(17)

1,74 + 0.41 mm 
(4)

1,36 + 0.25 mm 
(16)

N3 1,31+0.26 mm 
(18)

1,64 + 0.37 mm 
(8)

1,34 + 0.25 mm 
(16)

N4 1,32+0.26mm (17) 1,48 + 0.29 mm 
(9)

1,33 + 0.24 mm 
(15)

Figure 5. Mean error by points for N0 / LRR (left) 
and difference in mean error cards for subsequent 
level of number of points (right) 
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can be used and every deformed soft-tissue surface 
computed and considered. On a second time, a 
mean soft-tissue surface can be computed, merg-
ing all the deformed soft-tissue surfaces obtained 
by computing the mean location of the facial 
semi-landmarks. The accuracy of the deformation 
field depends on the number of points, as the 
criterion behind the computation of the deforma-
tion is the distance between the two surfaces. 

Table 5 presents the mean points-to-surface 
error obtained using the different skull shapes 
for computing the deformation field. As we try 
to extrapolate the deformations fields for the 
deformation of the face surfaces, a very precise 
deformation field is not a benefit as seen with the 
increase of the error following a large increase in 
the number of points. 

Comparison with Other Methods

We compare our results to those of Claes (2006) 
and Vandermeulen (2006). Among reconstruc-
tion techniques, the technique described in Claes 
(2006) is close to ours, with a supplementary 
deformation phase after the statistical predic-
tion. The statistical step consists in finding the 
instance of a statistical face model coinciding 
with “dowels” of tissue thickness placed upon 
the skull landmarks. It corresponds to the joint 
statistical model method for a small number of 
skull landmarks (in the order of N1). The study 
is conducted on a database of 118 samples. The 
reconstruction error corresponds roughly to our 
point-to-surface errors. The mean reconstruction 
error is 1.14 mm with a standard deviation of 1.04 
mm. The highest reconstruction errors (4 mm) are 

located in the chin and eyes regions, with errors 
for the region of the cheeks and the nose (except 
the tip) toward 2 mm. In regard to the smaller 
database and difference in the points correspon-
dence step and artefacts generated, we seem to 
be able achieve similar results with a generally 
simpler methodology, i.e. without supplementary 
deformation phase with no phisicaly signifiance.

The technique developed in Vandermeulen 
(2006) is based on the use of continuous surface 
and the study conducted on 20 samples. The mean 
reconstruction error is 1.9 mm with a standard 
deviation of 1.7 mm. The largest reconstruction 
errors (2-3 mm on average) occurs on the nostrils 
and masseter region. We appear to outperform 
those results, however based on a smaller database. 
We can remark that the regions with large recon-
struction errors coincide. Tilotta (2007) propose 
a local method of facial reconstruction combining 
prediction obtained on surface patches, delimited 
by landmarks. The study has been performed on 
two regions: the nose region and the chin region. 
For our methodology, the mean reconstruction 
error for the nose is 1.40 mm with a standard 
deviation of 0.25 mm. The mean reconstruction 
for the chin region is of 1.51 mm with 0.67 mm 
standard deviation. The results presented in this 
report outperform these estimations with a mean 
reconstruction error of 0.99 mm, which motivates 
us to consider more local procedure in the recon-
struction process.

Statistical Shape Models and the 
Correction of the Shape of the Nose

As seen in the previous section, each of these statis-
tical facial reconstructions are based on statistical 
shape models, either common or separated. For 
each model, we can observe the variations of the 
shape of the face caused by the variations upon 
each variability modes. For example, figure 6 
presents the variations of the face shape according 
to the 7 first modes of LRR, PCA JSSM and PCR 
models for parameters of value 3 times standard 

Table 5. Mean points-to-surface reconstruction 
error for deformation methods 

N0 N1 N2 N3 N4

Mean 2.61 
mm

2.64 
mm

2.78 
mm

2.86 
mm

2.88 mm
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deviation. The strength of the variations is given 
by the color scheme and enables us to locate the 
parts of the face associated to each mode. The 
first parameter acts upon the shape of the lower 
part of the face, with the shape of the chin as the 
most influenced part of the face for both regression 
methods. For LRR and PCA JSSM, the second 
parameter models the higher part of the face, par-
ticularly the outer edge of the mask, whereas the 
third parameter influences variations of the skull 
width. For PCR, the second parameter models 
the difference between compressed and elongated 
faces along the anterior-posterior axis and these 
variations corresponds roughly to the third mode 
of the LRR model, whereas the third is linked to 
the height of the face. As LRR and PCA JSSM 
take into account the observed variability of the 
face points, the second parameter reproduces the 
large variability of the frontier of the face mask, 
a variability that cannot be observed in the skull 
points for the PCR model and thus not taken into 
account by the PCR model. The fourth parameter 
concerns the temporal region for all models. Be-
ginning with fifth mode, each part of the model 
is described differently for each methods.

There are as much parameters than the mini-
mum between the number of subjects or the 
number of points coordinates. However, as only 
the first parameters will be selected by the cross-
validation procedure, if the parameters acting 
upon the variation of shape of the nose are later 
modes, no variation of the shape will be pre-
dicted for any test subject. All reconstructed 
faces will then share the same shape of the nose. 
Which parameters affect the shape of the nose 
and which skull landmarks correspond to the 
prediction of the shape of the nose, can be answered 
by the observation of the variations of the shape 
according to the modes. In the LRR case, the first 
parameter with consequences for the shape of the 
nose is the 6th parameter. The joint statistical shape 
model distributes variations on the shape of the 
nose between the 5th and the 6th parameters. PCR 
do not present any modes in the twenty first that 
influences only the shape of the nose. 

As we know that our method performs badly 
for this region, we can offer several predictions 
with different shapes of nose, corresponding to 
different values of the “nose” parameters of the 
model. For example for the reconstructed test 

Figure 6. The variations of the face shape according to the 7 first modes of LRR, PCA JSSM and PCR 
models for parameters of value 3 times standard deviation. Top row: PCR model. Middle row: PCA 
JSSM model. Bottom row: LRR model
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subject presented Figure 3 shows a very different 
shape of the nose than the original subject. Such 
modification on the value of a parameter will 
increase the facial reconstruction error as defined 
previously, but perhaps offer better recognition 
chances.

CONCLUSION

We proposed a statistical method for 3D com-
puterised forensic facial reconstruction. It relies 
on the use of a common set of points for the de-
scription of the individuals. In this set of points, 
anatomical skull landmarks are completed by 
points located upon geodesic curbs linking the 
anatomical landmarks. Facial landmarks are ob-
tained using a mesh-matching algorithm between 
a common reference mesh and the individual 
soft-tissue surface meshes. The facial reconstruc-
tion problem is resolved by the building of a 
linear regression model following either Latent 
Root regression method or Principal Component 
Regression method for equivalent results. The ac-
curacy of the reconstructions made by the method 
was measured by leave-one-out cross-validation 
tests and compared to the use of a joint statistical 
shape model of both skull and face and a facial 
reconstruction method based on deformation 
fields. These results were discussed in regard to the 
results of other facial reconstruction methods on 
different databases and in regards to the problem 
of the shape of the nose. In conjunction, we have 
addressed the practical problem of the choice of 
the number of skull landmarks. Depending on the 
statistical method used and taking into account the 
size of the database and the limits of the extraction 
procedure, the necessary number ranges from two 
hundred to one thousand. 

Some extensions can be proposed to the re-
construction method. First of all, having a larger 
database will increases the flexibility of the model. 
The more examples of the surfaces the model 
has, the better the relationships between the two 

surfaces are learned and the better the models 
based on a great number of skull landmarks will 
perform. Secondly, a better control of the point 
correspondence procedure for the soft-tissue 
meshes is necessary in order to soften the errors 
observed in the outer boundaries of the face mask. 
Then, an automatic extraction of the anatomical 
landmarks from the skull would make the com-
plete reconstruction pipeline automatic. Lastly, to 
complete the computer-aided facial reconstruction 
procedure as a tool of generation of possible faces 
associated to an unknown skull, some graphic 
oriented computer applications must be added. A 
first one is the use of textures for the skin and the 
integration in the generated meshes of artificial 
eyes and hairs -which corresponds to the fourth 
step of reconstruction procedures (Mask Design 
/ Virtual Make-Up). With these added features, a 
computerised facial reconstruction approach can 
compete with manual techniques. A second part 
would be the animation of the face using move-
ments learned on example. The main principles 
applies for learning the movement of one face 
and for learning the variability of shapes observed 
between subjects. Numerous studies and data exist 
in the field of audiovisual speech (Bailly, 2003; 
Cohen, 2002; Lee, 1995; Pandzic, 2002; Turakate, 
2003), where the main goal is to create “talking 
heads” of subjects. Other related and collaborative 
problems for facial reconstruction could also be 
found in maxillo-facial surgery (Marécaux, 2003; 
Payan, 2002; Schramm, 2006; Zachow, 2006), 
where one tries to predict the shape of face fol-
lowing an ablation of the jaw bones. 
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KEY TERMS AND DEFINITIONS

Landmark: An anatomical structure used as 
a point of orientation in locating other structures.

Regression: A: functional relationship be-
tween two or more correlated variables that is 
often empirically determined from data and is 
used especially to predict values of one variable 
when given values of the others <the regression 
of y on x is linear>
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Template: A template can be thought of as an 
exemplary instance of the object, containing all the 
information required to measure and analyze the 
object. The most common dataset in orthodontics 
is related to analysis of a lateral cephalogram and 
contains the conventional cephalometric points 

and measurements. However, templates are com-
pletely user-definable, so they can be created for 
whatever purpose is desired. Examples include 
templates for measuring dental casts, facial pho-
tographs, osseous structures from CTs, etc.


